

Maka hall at Yvoir : construction of a pool pass

Existing barrier

Masonry-made spillway + winnowing

- Difference in heights: 1.90 m.
- ➢Issues: gateway of the Bocq Basin; confluence with the Meuse River
- > Landmark species: trout, grayling, barbel
- Property: municipal; private concession for the hydro power plant
- Average flow of the Bocq: 2.31 m³/s

Major constraints

Construction of a hydro power plant (rotating auger)
Confined urban site; very difficult access; security issues

Technical arrangements

- 8 falls 24-cm height (7 pools)
- Dimension of the notches: 0.30m wide ; 0.8m minimum water height
- submerged orifices: 0.2 X 0.2 m
- Reserved flow = 370 l/sec (= nominal pap flow)
- Reinforced concrete
- Coarse bottom substrate (rocks drowned in concrete)
- water level upstream almost constant (automatic valve)
- Control trap

Cost: 214,285 €

Commissioning: October 2011

Aminthe Foundry at Yvoir : cascaded dams pass

Obstacle

Masonry-made spillway
➢ Difference in heights: 1.50 meters
➢ Use: feeding a former landscaping (and sanitary) section of river
➢ side-sifting, with manual activation at times of flooding

Property: private

Iandmark species: trout, grayling, barbel

Major constraint

Difficult access

Technical arrangement: cascaded dams of concreted rocks

7 falls, 20-22 cm height

2 notches (5 thresholds upstream) or 1 notch (2 thresholds downstream) per dam

 Minimum water heights in notches: from 0.30 m (upstream) to 0,50 m (downstream)

Basic flow in arrangement: 440 litres/sec. (before spillway spilling))

Overall cost: 78,034€ End of works: July, 2012

Specific difficulty:

Notch dimensions in side spillway had to be remade (flow coefficient Kd= 1.3 instead of classic values of Kd= 1.9 to 2.1)

Dapsens Park : by-pass channel (River Bocq)

Obstacle: masonry-made spillway

- Difference in heights: 1.50 meters
- Use: landscaping park
- Property: private
- Side-sifting, with manual activation at times of flooding

➤Landmark species: trout, grayling, barbel

Technical arrangement: by-passing channel

- Length: 66 metres
- Flows down onto an existing side channel
- Average slope: 2.2%
- Basic flow: 250 litres/sec
- Alternating pools and riffles
- Rock-filled, earth-sealed banks and bed
- Small weir in the side channel to improve attractivity for fish into the by-pass channel

Major constraints

Need to build footbridge, access Violent floods

Cost: 75,004€ (footbridge not included) Commissioning: June 2011

Spontin village : removal of a weir (masonry-made spillway)

Obstacle: masonry-made spillway

- Difference in heights: 1.20 m.
- No defined use
- Flood potentially damaging
- Landmark species: trout, graylings

Major constraints

• Retaining walls protecting a main drinking water pipeline

Opportunities

• Land to be bought with pond

Cost: 79,170 € (land acquisition excluded) End of works: December 2010

Technical arrangement:

- Demolition of the masonry weir
- Stabilisation of the retaining wall
- Fish shelters through holes into the wall
- Building 2 bottom sills to reduce headward erosion
- Stabilising of banks along a 200-m distance (riprap groynes, banking and plantations)

River Bocq at Spontin (VIVAQUA) : Rehabilitation of a 600 meters concrete/masonry channel through step /pool scheme

Context

➢ On a 600-m long area, the Bocq was straightened and channelized so as to avoid contamination of drinkable water collection.

> This resulted in a loss of habitat, as well as a breaking in the longitudinal continuity (insurmountable barrier) due to high velocity and shallow water.

Landmark species: trout, graylings

Constraint

Flood risks of the drinking water well cannot be increased
 Objective

➤ to restore ecological continuity

Technical arrangements:

- step/pool scheme based on a cascaded construction including 23 boulder bars
- +35 cm rise of waterline
- Blocks fixed on top of the concrete apron or retained with steel corners
- Rock-filled berms of different sizes
- 200 T of pea gravels, for creating spawning ground
- 56 stone made fish shelter
- 140-m long and 50-cm high dike on the left side together with and excavation of a dry cut on the right side

Cost: 317,000 € End of works: September 2012

Major difficulties

• Need to retain or fix boulder and block in concrete aprons

Gemenne : By-pass channel and placing trees for habitat diversity

The problem

Old sluice gates for irrigation to be maintained

- Massive silting-up upstream
- Height of fall before works: 1.65 m
- > Average flow: 1.57m³/sec
- ➤ Low flow (P95): 0. 610 m³/sec
- Degraded riverbed along 400 m upstream
- Landmark species: trout, grayling

By-pass channel

- Cleaning 30 metres upstream the winnowing, and lowering headwater level (-80 cm)
- Height of fall after works: 0.85 m
- Arranging the by-pass channel in a flooding arm
- Average slope = 2.1%
- Basic flow= 350 litres/sec (low water)
- Quiet areas (pools)
- Banks protection by rock-filling or rock-filling with meshed-coco + plantations

Total cost : 80,385 € End of works: November 2012

Arrangements of habitats along 400 m upstream dam

- Earth moving for low-level berms, for helophytes
- Installing fish shelters and deflectors made of trunks and
- stumps in the waterbed (60 trunks, 20 stumps)
- Digging of 2 bays connected to the mainstream

Emptinale : Re-meandering and culvert bed improvement

Problem

The Bocg river was straightened and the stream partly culverted in the aftermath of road RN921 construction

 \succ Loss of habitat

Impassable culvert at low flow (insufficient) water depth)

Low stream power (=20W/m²)

Objective

Cost: 72,010 €

Fast recovery of lost habitats

Re-meandering

Creating 2 highly sinuous meanders along a 100metre straight

- High differentiation of facies, incl. riffles
- Installation of spawning grounds and fish shelters
- Minor or inexistent bank protection (gentle) slopes)

Culvert bed improvement

- Sludge cleaning
- Rock-filling for a shorter section
- Scattering of pebbles and rocks on concrete bed

Petit Bocq at Natoye : Re-meandering and new rock-filled ramp

Problem

 An old, unsurmountable dam with a 3.30 metre level difference
 A waterway not flowing in its thalweg
 Gully erosion caused by flooding
 Landmark species: trout

Objectives

- To put the waterway in the talweg of the floodplain
- To remove the obstacle
- To allow for certain fluvial dynamics

Flows

- DC11= 0.082m³/s
- DC1= 0.290m³/s
- Flooding 10 years = 4.9m³/s

Constraint

- Unstable land (wetland)
- Waste water drain (underground)

Works

- building a 1.8 meter high cascaded construction including 9 rockfill thresholds with 20-cm wide notches
- re-meandering channel along 260 metres, with a 0.95% slope
- pool-riffle sequence re-installed
- 75 tons of gravel for spawning ground
- 12 trunks for fish hidings

Major difficulties

- Swampy land
- Adjustments in rock-filled thresholds

Cost: € 136000€ End of works: September 2013

Problem

During the 60's, the Eau Blanche river was straightened and over-widened and its banks were covered with riprap

along 2.5km

Objective

- To restore a good diversity of water habitats
- To increase the fluvial dynamics

WALPHY

Constraint

• Flooding risks medium to high

Description of works:

- Removal of a 60-cm-high level obstacle upstream (old mobile hatch constantly opened)
- Narrowing the low-flow channel, creating new berms and micro-meanders with wooden or earth/rock artworks
- Removal of specified rock-filled protections of banks
- Creating small islands
- Creating fish hidings with trunks and stumps
- Restoration of spawning areas
- Planting of helophytes, willows and alders

Cost: 193,358 € End of works: May 2011

Eau Blanche at Nismes : creating a sinuous low-flow channel in an over-widened river along 2.1km

Problem

➢ In the late 60's, the Eau Blanche river was straightened, deepened and rock-filled.

Opportunity

- Flooding risk is low (middle part only)
- Furrow slice on top of bank available in some spots

Ambition

- To create a meandering channel on the minor bed (secondary meandering)
- To allow for a limited fluvial dynamics (banks erosion)
- To maintain & develop interesting habitats

Description of works:

- Creating 9 meanders in straight sectors (digging and filling work)
- Removal of rock-filled banks protections in specified spots, and removal of a concrete crossing ford
- multi-stage, gentle slope widening
- creating shoals and islands
- Laying of trunks and stumps into the bed as habitat or deflectors
- Paving stones as fish shelter
- Laying of 64 T of pea gravels scattered among 11 areas of rapid flow, for creating spawning ground
- Digging of backwaters
- Planting of helophytes, willows and alders

Earthmoving for meanders: typical profile

Cost: 80,190€ End of works: September 2011

Eau Blanche at Boussu-en-Fagne : reconnecting remnant

meander

Problem

> During the 60's, the Eau Blanche was straightened, deepened and the banks covered with riprap along a 10-km portion

It resulted in an embankment at Boussu (riverbed does not flow at lower point of floodplain)

Opportunity: neighbouring land made available by owner

Ambition

- To recover old route and raised bed along 160 meters
- To maximise the habitat diversity at start
- To able river dynamics

Constraint

Need to keep the same low level of flooding

•Over-dimensions of cross sections (two-stage channel) •Carrying of a dry by-pass channel

Works:

- Embankment of the straightened bed, keeping a flood spillway
- creating backwater in old bed
- Levelling (1,300 m³ to be removed) at former riverbed straight (clearance of gravels and residual scoria; bed gradient=0.1%)
 Removal of downstream small weirs (total h = 40cm)
- Building bottom sill at the end of the meander so as to reduce headward erosion (maximum meander slope = 0.28%) and keeping riffles
- Laying of trunks and stumps on banks
- Scattering of rock-filling blocks
- Planting of helophytes, willows and alders

Cost: 77555€ End of works: November 2011

Boussu-en-Fagne : **Restoring the meandering course** of "Grand Morby"

Starting point

➢ In the late 60's, the Grand Morby stream was straightened and moved.

At Aublain, 4 km upstream Boussu, the stream was connected by derivation to the Eau Blanche, thus increasing artificially its natural discharge
 Several trout spawns observed; lamprey also present
 Natura 2000 classified area.

➢ average slope: 0.12%

Objectives

- To bring the Morby back to its original bed, in the floodplain's thalweg along a still visible sinuous route including oxbows (total length=1 km)
- To keep an minimum flow (15 l/sec) into the rectified bed

Flows

• Basic flow Morby Project: 70 l/s

Opportunity

• The route of the former bed is still under public property (no acquisition)

Description of works:

- Earth removal along 480 metres on the former, covered bed in the grassland
- Earth removal and cleaning in specific spots of former, nonfilled bed
- Several profiling works, with narrow, deep (min. 30 cm) channels of low water,
- Laying of pebbles and rocks for spawning areas
- Laying of trunks and branches for fish shelters
- Construction of 3 agricultural bridges, troughs, nose pumps, fences
- Planting of willows and helophytes

Cost: 89,400 € End of works: December 2012