

River Restoration Center - 13th Annual Network Conference *Delivering River Restoration: Recipes for Success* Workshop: Project Monitoring and Assessment Nottingham, April 20th 2012

Pilot project « Walphy » : Walloon experimentation of river restoration

Alexandre Peeters^a, Gisèle Verniers^b, Bernard de le Court^c, Éric Hallot^a & François Petit^a

- ^a Hydrology and Fluvial Geomorphology Research Center, University of Liège, Belgium
- ^b Research Unit in Environmental and Evolutive Biology, University of Namur, Belgium
- ^c Unnavigable watercourse Dept., Service Public de Wallonie, Namur, Belgium

I. Context & objectives of the project

Context : Water Framework Directive (2000/60/CE): Water bodies are required to achieve the « good ecological status » by 2015 Ecological status

Pilot project « Walphy » - Design of a decision tool for hydromorphological restoration of water bodies in Walloon Region (LIFE07 ENV/B/000038)

Objectives:

- To develop a structured approach aiming at improving morphological quality of the upstream Meuse basin in order to achieve the "good ecological status" (WFD)
- To carry out experimental river restoration works on several risk water bodies
- Ecological and geomorphological monitoring of the restored river systems
- To develop a useful and suitable methodology to determine and schedule river restoration works in Wallonia

Nottingham, April 20th 2012

Workshop: Project Monitoring and Assessment

Nottingham, April 20th 2012

Workshop: Project Monitoring and Assessment

201 - 210

211 - 220

221 - 230

231 - 240

241 - 250

251 - 260

261 - 270

271 - 280

281 - 290

291 - 300

301 - 310

311 - 320

91 - 100

0 - 10

11 - 20

21 - 30

31 - 40

41 - 50

51 - 60

61 - 70

71 - 80

81 - 90

101 - 110

111 - 120

121 - 130

131 - 140

141 - 150

151 - 160

161 - 170

171 - 180

181 - 190

191 - 200

Eau Blanche:

Catchment area: 249 km² Average slope: 2.3 ‰ $\omega \sim 20 \text{ W/m}^2$ Straightened river

Poor stream-floodplain connectivity

MNT – LIDAR (LAser Detection And Ranging), 2001

Elevation above water level (cm)

Violet: Watercourse from 1910 (IGM, 1948) Blue: Current watercourse (SPW, 2004)

Workshop: Project Monitoring and Assessment Nottingham, April 20th 2012

Varied restoration techniques

Flow deflectors and gravel re-introduction

Woody debris

Low level berm

Workshop: Project Monitoring and Assessment Nottingham, April 20th 2012

III. Monitoring: data collection and analysis

Aim : assessing the success of restoration projects

Feedback:

- For long-term monitoring
- Reflects the quality of water and substrates

Multiple indexes Optimized data analysis

Biology:

Macrophytes: IBMR index (Haury *et al.*, 1998) based on:

- cover,
- ecological amplitude,
- trophic level of taxa.

Macroinvertebrates: indexes based on:

- abundance,
- diversity,
- species richness,
- specific pollution sensitivity index,
- habitat quality,...

Electrofishing and IBIP index (Didier, 1997, Kestemont et al., 2001) based on:

- abundance,
- density,
- species richness,...

Morphology:

Microhabitat mapping

a) Water depth model

Field survey of the stream channel:

- Stream bed boundary
- Stream bed elevation
- Water surface elevation

Nottingham, April 20th 2012 0 m e **Bocq at Senenne** September 10th 2009 $Q = 0.9 \text{ m}^3/\text{s}$ at Spontin station 50 m Water depth (m) 0 - 0,2 0,2 - 0,4 0,4 - 0,6 0,6 - 0,8 1.2 - 1.5 Area above water 0-0.2 0,2 - 0,4 100 m

Workshop: Project Monitoring and Assessment

Monitoring: data collection and analysis

Workshop: Project Monitoring and Assessment

Nottingham, April 20th 2012

16 m

Taken into account when monitoring (before and after restoration work)

Morphology:

Morphodynamic attractivity index (IAM) (Teleos, 1999)

$$IAM_{calculated} = \left(\sum_{1}^{n} (Si * Attract.(subs.))\right) * Var(subs.) * Var(he) * Var(v)$$

Si = Area of the i substrate
Attract. = attractivity of the i substrate for the fish
n = Number of substrate
Var(subs.) = Number of substrate
Var(he) = Number of depth class
Var(v) = Number of water velocity class

"IAM calculated" compared to "IAM reference"

Feedback:

- Easily calculated from the microhabitat mapping
- Same remarks as for the microhabitats
- Provides fish habitat predictions
- Index with a fish orientation
- Useful for monitoring

Substrate	Attractivity
Root wads, woody coarse debris	100
Undercut banks	90
Hydrophytes	80
Boulders (with fish caches)	60
Cobbles	50
Helophytes	40
Root mats	40
Boulders (without fish caches)	30
Mix of pebbles and cobbles	25
Pebbles	20
Organic debris	10
Sands	8
Clay and silt	4
Mud	3
Concrete surface and slab	1
Affluents, spring	+25%

Morphology:

Tronçon index (Teleos, 1999)

Heterogeneity Sinuosity, diversity of width, depth, flow,	Heterogeneity (H)		Attractivity (A)		Connectivity (C)		ity	Stability (S)		PHYSICAL QUALITY		
	score of 111		score of 90		score of 130		60	score from -60 to +40		= (H + A) x C x K Score of 30 600		
substrate, presence of backwaters,	Α	≥ 50	Α	≥ 45	Α	≥ 65	S	edimentation	> +10	Α	2	6 500
Attractivity Spawning ground, hiding places, presence of backwaters,	В	40 - 49	В	34 - 44	В	49 - 6	4 B	alance	-10 / +10	В	3 50	0 - 6 500
	С	28 - 39	С	23 - 33	С	33 - 4	8 E	rosion	-25 / -10	С	1 50	0 - 3 500
	D	14 - 27	D	11 - 22	D	16 - 3	2 S	trong erosion	-60 / -25	D	400 - 1 500	
	Е	≤ 13	Е	≤ 10	Е	≤ 15		Gives a K co	efficient	Е	< 400	
Connectivity												
Obstacles, banks, riparian areas,							К	-60 < S < -26	-25 < S < -11	-10	< S < 9	10 < S < 40
	—						H ≥ 50	K = 0.85	0.85 K = 1		= 1.25	K = 0.75

H < 50

K = 0.85

K = 1

K = 0.85

K = 0.75

Feedback:

- Uneasy-to-use codage file
- Semiquantitative method
- Index with a fish orientation
- Useful subindexes to define problems (pre project) and for monitoring

Monitoring: data collection and analysis

Geomorphology:

Sediment transport

Evaluating bedload mobility using traced pebbles and PIT-tags

PIT tagged pebbles placed in rivers at:

- reference reaches
- reaches impacted by obstacle (e.g. upstream of weir)
 - enable to highlight restoration of free movement of sediment
- reaches with spawning gravel reintroduction
 - enable to characterize the mobility of new spawning gravel

Feedback:

- Allows particles with b-axis of 20 mm to be traced
- Do not contain a battery
- Great recuperation rate (more than 80%)
- -Requires expensive equipment
- -Provide useful information (bedload movement discharge, distances travelled, granulometric indexes)

Monitoring: data collection and analysis

Geomorphology:

Clogging of the gravel bed

<u>Sediment traps</u> buried into the gravel bed on:

- reference reaches
- reaches impacted by restoration work
- reaches with gravel reintroduction Feedback:
- Susceptible to loss (flood, scour,...)
- Cannot be used in water deeper than 0.8m
- Time-consuming (laboratory analysis)
- Installation does not provide natural conditions (breaking of the armour layer)
- → Suitable to evaluate short period of work

Wooden stakes inserted into the gravel bed on:

- reference reaches
- reaches with gravel reintroduction Feedback:
- Qualitative method
- Simple technique to implement

Geomorphology:

Flood effect on restoration works

Restoration works and their stability and resistance to erosion: related to flood characteristics (discharge, recurrence, specific stream power, shear stress)

Slope of the water surface Geometrical characteristics of the wetted cross-section

Discharge

- Specific stream power - Shear stress

www.walphy.be

Workshop: Project Monitoring and Assessment Nottingham, April 20th 2012

Thank you for your attention

DCENN : Francis Lambot – Bernard de le Court – Louis-Michel Petiau - Olivier Desteucq – Pierre Joye ULg / LHGF : Alexandre Peeters – Eric Hallot – François Petit FUNDP / URBE : Gisèle Verniers – Jean-Pierre Descy